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We investigate the performance of the multiresolution method.
The method was recently proposed as a way to speed up computa-
tions of compressible flows. The method is based on truncating
wavelat coefficients. The method showed good performance on
one-dimensional test problems. We implement the method in two
space dimensions for a more complex compressible flow computa-
tion, intended to simulate conditions under which many production
CFD codes are running. Our conclusion is that we can in many cases
reduce the CPU time, but that the gain in efficiency is not as large
as for the one-dimensional problems. We furthermore observe that
it is essential to use the adaptive multiresolution method, which
mixes centered differences with TVD methods. © 1995 Academic
Press, Inc.

1. INTRODUCTION

We implement and test the multiresolution scheme for the
two-dimensional Euler equations on a curvilinear grid. The
multiresolution scheme is a method which is used to speed up
computations with expensive ENO or TVD schemes. It is based
on a wavelet decomposition of the solution to flag points where
the solution is nonsmooth. In these points the numerical flux
is computed as usual, using an ENO or TVD method; in the
other points, where the solution is smooth enough, the numerical
flux can be computed by an inexpensive interpolation from
surrounding grid points. The method has recently been proposed
and shown to have good preformance when used for hyperbolic
model problems in one space dimension [I, 2].

The purpose of this work is to evaluate how this method
works in a practical CFD computation. We give details about
implementation at boundaries and in two space dimensions. In
[2], an efficiency of around 5 was reported for a one-dimen-
sional Riemann problem for the compressible Euler equations.
Can we obtain a similar performance for a more complex flow
in two space dimensions?

2. MULTIRESOLUTION REPRESENTATION OF DATA
In this section, we describe the method by giving a brief

summary of [1].
Consider the approximation of a PDE in one space dimen-
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sion, on the uniform grid x; = j Ax,j =0, 1, ..., N. The numerical
solution is given by (uy, uy, ..., Uy ), with 1; an approximation to
the solution at x;. Introduce L levels of successively coarser
grids,

G = (xg, X, o xy), k=0,.... L

Let x¥ denote grid point j on grid G;. Then x! = j Ax and
xf=xkh = j2* Ax. Let N; denote the number of points in G;.
Then N, = 27N,

We let uf denote the numerical solution of a PDE at the
point x?.

Assume that the solution is given on grid G, and that we
want to find it on the finer grid G,_, (Fig. 2.1). For the even
numbered grid points we have

-1 — Lk
"y —uj,

i=0,1,.., Ne;

to find the seclution at the odd grid points, we let f(x, u*)
interpolate u} on G,, such that /(x}, u*} = uf. We then have the
approximation &5, = I{x§,, u*) to u5;, . The interpolation er-
ror is d¥ = w47l — 25!,. Thus with knowledge of u* and 4* we
can reconstruct the solution on G*~'. We call (¢, d%) the multi-
resolution representation of u*~!. Note that the vectors u*, d*
together contain the same number of elements as does u* '
In summary, we switch between the representation u*~' and

(d*, u*) by the forward transformation

ko= k!
o (2.1a)
di = uf — I(x5, w9
and the backward transformation
Wil =t
o (2.1b)
wli o= df 4+ I uf).
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FIG. 2.1, Alignment of grids for fivite differences.

This is inexpensive if 7(x5), u¥) is a straightforward linear
interpolation operator.
We transform consequtively on all grids

W= (d uYy—=d. du)y— ... @' d% .., d5ut),

The vectors {d', d2, ..., d%, u*) are the multiresolution representa-
tion of «°, The interpolation errors ¢* contain information about
the smoothness of the solution. In the multiresolution scheme
given in [1], the multiresolution representation is used to flag
the nonsmooth parts of the solution, which can be used in
adaptive numerical techniques. If df is large at some grid points,
this indicates that the solution is nonsmooth there. There will
be no direct computations of the solution involving the 4*
coefficients; they are only used as smoothness monitors.

In the context of cell averages, similar formulas can be de-
rived.

Let »; denote an approximation to the cell average

Alx fl u(x) dx (2.2)

over the cell [x;, x4, ]. Use the grids G as defined above. From
the cell average property (2.2), we obtain

uf = (i + 1il)72.

Figure 2.2 clarifies the comrespondance between G, and G,.
To find the value 1%}, by interpolation from G,, we proceed
through reconstruction by the primitive function; i.e., we evalu-
ate the primitive function

i
Pr= > ubAx

m=—t

on G,. Then P* is interpolated and the interpolant differentiated
to obtain the approximation

P}H - I(xlﬁﬂlnpk)
Ax )

pk—t
Ui
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Note that P# are point centered and thus enumerated according
to Fig. 2.1. Given this approximation, we define as in the point-
centered case the transformation

(2.3a)
(2.3b)

ko k=1 pk—]
dj CT Ugie T

k. le k=1 -1
iy i = E(sz + u2j+1)<

Thus we can define the multiresolution coefficients ¢ for finite
volume as well as finite difference approximations.

We conclude this section by giving the exact formulas used
in our computations.

For finite differences we use the grid alignment in Fig, 2.1
and the formula (2.1) with

T u®) = fo(—ufey + 9ufey + 9uf — ufy)),

j = 2" ---st - 25
TOAT, 1) = (Sub, + 15uf — Suby, + ulsy),
(2.4)
i=L
1052, wb) = (35uf — 350k, + 21ub, — Subss),
i=0,

which are fourth-order accurate formulas, including the bound-
ary points. The formulas for the boundary points j = N, — 1,
N, are symmetric with j = 0, 1 and are not given.

For finite volumes we use the grid alignment in Fig. 2.2 and
the formula (2.3), with

A =s(—ul +Buf +uln), J=1L N -2,
&5;&1 = %(S.u} + 4uj5+l — u}‘+2), ] = 0, (25)

ft’ﬁ}ll = %(lluf - 4“}‘_1 + u}‘,z), j = NR' _ ],

which are third-order accurate formulas, including the boundary
cells. Note that here uf is a cell average.

3. MULTIRESOLUTION NUMERICAL SCHEME

Assume that we want to solve the hyperbolic partial differen-
tial equation

u, + flu), =0, —oo<<x<oo, >0,
I S T
ky \ | |
0 ! 2
o] Q o (=] [s] o
e | | | | | | |

0 1 2 3 4 5

FIG. 2.2, Alignment of grids for finite volumes.
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where initial data u(0, x) = uy(x) are given. We approximate
by a difference method in conservative form,

1
W' =ul — M — o)

on the grid Gy; ] is the approximation of the cell average
of the solution in the cell [x_,2, %:12] at the time ¢, = n
At, where At is the time step. The numerical flux function,
R = Wi, , Wip—y, ..., uj-,) is consistent with the physical
flux, ie., hlu, u, ..., w) = flu).

In [2] it is described how the multiresolution decomposition
in Section 2 can be used to evaluate the numerical fluxes very
efficiently. We next give a summary of this method.

The idea of the multiresolution method is as follows. All
numerical fluxes are evaluated in the points of the coarsest grid,
and for the finer levels, the numerical fluxes are evaluated only
when the smoothness monitor, 4* is larger than some given
tolerance, otherwise the fluxes are obtained by interpolation
from the coarser level. The assumption in the multiresolution
method is that the numerical flux A}, is considerably more
expensive to evaluate than to compute it by interpolation from
neighboring points. This is the case in, e.g., the ENO method.
The multiresolution method contains three ingredients:

1. A multiresolution representation to flag the smooth parts
of the solution. We write this as

wy— (d', d% ..., dt, ut),

where d* contains the interpolation errors. This was described
in Section 2.

2. A truncation algorithm to decide where to evaluate the
numerical flux function, and where to interpolate it

d', d* .., d" ut)y = (m', m*, ., mb),

where m} contains O or | to flag whether a flux evaluation is
necessary or not. This array is described below.

3. A reordering of the flux evaluation. We start by evaluat-
ing the numerical fluxes on the coarsest grid, G,,
Bty = RQUuhbe,, Bty 1,

,M’fz"wq), j=0,..., N[_.

Note that the fluxes are evaluated using the points on the fine
grid. Once the fluxes are given on G, we compute new fluxes

at G,_, as
ifmf = 1}
ifmf=0

j= 0, ...,Nk_ I.

P {h(u,’-‘+p,...,u?_q)i:(2j+ )2+
L+ —

1(x5 0, B

The coefficients df are used to decide how to evaluate the
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namerical flux function. If df is small, then the solution is
smooth and the flux /.., can be obtained by interpolating from
fluxes given in neighboring points. If 4% is large, the solution
is irregular and #;,,,, is evalvated using a shock capturing
method. The assumption here is that the interpolation of k4,
is less costly than the direct evaluation of A2 and, thus, that
a substantial gain in efficiency can be obtained. This is the case
if an ENO method is used.

The truncation algorithm given in [1], consists of the steps
shown in Algorithm 3.1. We assume a finite volume approxima-
tion. The algorithm computes the flags mf from the given multi-
resolution coefficients df.

ALGORITHM 3.1.

mi=0, O0=j=N-11=kk=sL
forj:=0toN, — 1 do
if |dt! > &, then
mo=11=-101
if |df| > 2°&;_, then
mifl, = 1
mirt =1
endif
endif
endfor

The algorithm is made such that we apply the flux interpola-
tion to compute the smooth values of the function; i.e., we need
smoothness at time #,,. Thus the first test, |d¥| > &, flags that
the solution is nonsmooth at x§, and to take into account that
the nonsmoothness can spread to neighboring points (assuming
a CFl number less than one), the neighboring points j — 1,
j + 1, are flagged too. The test |d¥| > 27g,-,, is a test for for-
mation of shocks, i.e., the gradients are becoming sharper,
p is the expected convergence rate of the solution; for details
see [1]. It is shown in [2] that the proper choice is g, = &/2%
We thus have two parameters to tune, £ and p.

4. IMPLEMENTATION IN TWO SPACE DIMENSIONS

The two-dimensional compressible Euler equations is a sys-
tem of PDE on the form

w, + F(w), + g(w), = 0,

where w = (p, pi, pv, ) with density p, x-velocity u, y-velocity
v, and total energy e.

We approximate these equations on a curvilinear grid of »; +
I X m; + 1 grid points,

{(x(gv T)): y(gv 77))|(§, 17) S [0 rer ni] X [0 nj']}'

With this grid, the Euler equations are transformed into
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1
w2 ((yf (W) — x,8(W))e + (—y:L(W) + x.g(w)),) = 0

in the uniform (£, n} space. Here A = x;y,, — x,¥;. We consider
numerical methods in conservative form

dW,'_j 1
—dt = — A_ (A+.‘h.‘+lflj + A+jgi-f+”2)'
Ly

We use a cell centered method; i.e., the dependent variables
w, ; are stored at the midpoint of the cell formed by the corners
G, G+ L GJF+ D, G+ 1,7+ 1) of the grid. The
numerical fluxes b5, g ;12 are approximating the fluxes
vl (w) — x,8(w) and —y£(w) -+ x.g(w) on the cell interfaces.

We use a first-order, or a second-order, accurate Roe’s
method [3] for the numerical fluxes. The first-order method has
a three point stencil, and the numerical flux function depends
on two arguments

hwuz,;‘ = h(“iﬂ‘j, u;;).

The second-order extension is obtained from a piecewise linear
reconstruction with a slope s;; = s{wy; — u;, w;; — w1 ;) in
each grid cell. The second-order numerical flux then becomes

hﬁ-)lfz.j =hu.; — 8 ,/2, 0, + s;;/2).
We give boundary fluxes
h = h(w*, wy, — s,/2)

at the boundary x; and, similarly, at other boundaries. The slope
of the tast cell s, is computed through extrapolation of interior
slopes. w* = w,, is the free stream state at farfield boundaries.
For solid walls we nse w* = R{w, — §,/2) with R the reflexion
operator which takes the normal velocity, v to —v, and leaves
the rest of the variables unchanged. With the boundary fluxes
we can update the solution at all points and thus obtain the
solution at the new time w™'! at all cells.

We can directly generalize the one-dimensional multiresolu-
tion method by applying it linewise for the i and j fluxes
separately. For the i fluxes we apply the one-dimensional algo-
rithm to each grid line j = j,. Similarly for the j fluxes, we
apply the one-dimensional algorithm to each grid line i = .
We thus define the grid levels as

Gy = {(x(& . y(& M[(E M E0 .. n/2T X [0 ... 1},
k=0,1,..,L,

for the i-flux computation, and

Gy = {(x(& M, y(& )& M €10 .. ni] X [0 ... ny/2%]},
k=0,1,..L,
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for the j-flux computation. The algorithm becomes identical to
the one-dimensional algorithm, except for an additional outer
loop over the j grid lines (or over { lines for the j direction
sweep). To compute the multiresolution representation, we
take the cell area into account by using (4.1) instead of
(2.3b),

Aﬁjuﬁj = Al’éz‘_—i—]l,jugi_-i—]l,j + Aél__,lulél_j] s {4.1)
where Af; is the area of cell (i, j) in G,. The function Afuf; is
interpolated one-dimensionally on G, to obtain the interpolant
1(x, ARt ).

Implemented in this way, it is necessary to redefine the grid
hierarchy in each time step; i.e., we switch between i and j
each step. It would be possible to set up the grid hierarchies
once and keep them in memory, but the largest computational
cost in the multiresolution algorithm is the encoding procedure,
which has to be done even if the grids are precomputed. Thus
the recomputing of the grids does not give a significant contribu-
tion to the CPU time. The multiresolution representation
(d', d* ..., d*, u') has to be computed separately in the i and
J directions. We thus have to computz two multiresclution
representations for each time step.

Alternatively, it is possible to do a pure two-dimensional
multiresolution representation of the solution, which can be
used for both the i and j directions. We base this algorithm on
the grid levels

Gk = {(x(g’ T’): )’(f, 7?)) ‘ (g? T’) E [O ”r‘lzﬁ] X [0 b njlzk]}s
k=0,1,.., L

The flux calculations are still done one-dimensionally; i.e.,
By is computed for all j, but with a multiresolution in the
i-direction. The numerical scheme based on this purely two-
dimensional grid hierarchy turned out, in our implementation,
to be less efficient than doing two one-dimensional sweeps.
The reason is that the computation of the primitive function is
considerably more complicated in two space dimensions.

We evaluate the 7 direction fluxes, 7;.1,2;, as described in
Algorithm 4,1, which is very similar to the one-dimensional
algorithm. The ; direction fluxes are computed similarly. As
usual we denote the grid levels, Gy, ... Gy, with G the finest
grid.

We are solving a system of partial differential equations, but
this does not lead to any additional difficulties. The interpolation
and multiresolution decomposition are straightforward to do
componentwise. The truncation algorithm is done scalarly,
where in statements such as |d}| > e, |d}| is interpreted as the
L' norm of the four components of |d%|. The flag vector element
mf is thus a scalar.

Note that the flag mj‘ is only used on the levels &k = 1, ...,
L. On the finest level Gy, it is possible (o define an additional
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flag vector m?, which can be used to further improve the execu-
tion time [2]. In [2] this is done by defining

[I— 0 — 0
B = b, mzj—l, My = 1,

if |d}| > e, with £, a tolerance level for the smallest oscilla-
tions allowed. Otherwise m{ is set equal to zero. The numerical
flux function is then defined as

VD

f {hj+l-'2
i+1rz = o
b ilmy =0,

itm) =1
(4.2)

where #f.., is an inexpensive centered difference flux, and
A, is the computationally expensive flux of a TVD method.
Thus, this means that we use centered differences in the smooth
part of the solution.

ALGORITHM 4.1,

1. Compute all boundary fluxes.
2. forj:=0ton, — 1do
for i := 1 to n/2*1 do
Compute the coarse grid fluxes Aty ;
endfor
endfor
3. fork:=L—-1teldo
forj:=0torn, — 1do
fori:= | to n,/2*"" — 1
if m}'=0 then
Interpolate to obtain the flux

k -
Biein = Mgy,

else
Compute the flux Al 0.
endif
endfor
endfor
endfor

4. Update the solution.

5. NUMBER OF ARITHMETIC OPERATIONS

Let us compare the cost in number of arithmetic operations.
Let ¢, be the cost per cell 1o set up the multiresolution scheme,
i.e., computation of d* and truncation m*. Let ¢ be the cost of
computing one numerical flux function, and let ¢; be the cost
of interpolating one numerical flux function. Let us assume
that p is the fraction of interpolated fluxes. The cost of using
the muitiresolution algorithm is

Cop=c + pci+ (1 — py.

This should be compared with the cost of the vsual algorithm
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C = Cy.
Thus it is necessary to have

Cs

Cpn=C=2p=
Cf—Cj

in order to gain from using multiresolution. In our implementa-
tion we have ¢, = 53, ¢; = 20, ¢; = 140 for Roe’s method, in
two dimensions on a curvilinear grid. We obtain the condition

p = 044,

Thus in order to gain execution time more than 44% of the
fluxes must be interpolated. In the more favorable case of the
ENQ scheme, the fourth-order ENO/Roe method {4] can be
implemented using around 520 operations to compule one nu-
merical flux for two-dimensional Euler equations on a curvilin-
ear grid. This would give us

pzo.l;

1.c., more than 10% of the fluxes must be interpolated. We
conclude that the multiresolution method will probably increase
the efficiency for the ENO method.

In reality, we have observed that even a larger precentage
than mentioned above is required. The explanation of this is that
by reordering the flux computation as is done in the hierarchical
computation of fluxes in the multiresolution method, we lose
efficiency on many computer architectures. This is certainly
true on vector machines, but the reordering seems to have a
negative effect also for RISC-type architectures. Furthermore,
the multiresolution order of computing fluxes leads to more
paging to the disk on machines using virtual memory. Introduc-
ing the factor of loss from reordering, e, ie., if @ = 2 the
algorithm is twice as slow when reordered. Taking this factor
into account we get the cost of the MR algorithm

Cor = ¢, Tpe; + (1 — placy,
which leads to the criterium for p,

-+ —
= o N (] I)Cf‘
ocy — Ci

In the most favorable case when ¢; ® ¢;, ¢,, we obtain the cri-
terion

p=zl-—-1la

for having a gain in execution time using the multiresolution
method.
From the previous discussion, it is clear that ¢, and o are the
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TABLE X

Performance in CPU Seconds for Roe’s Method Computed
in Various Ways

65 %X 33 129 X 65 257 X 129 513 X 257

Straight flux 0.072 (.28 1.1 5.0
compuiation

MR order flux 0.076 0.28 1.2 5.0
computation

MR order fluxes + 0.13 0.50 2.0 9.3
MR overhead

MR order fluxes + 0.10 040 1.8 8.6

p-MR overhead

critical parameters. Tabie 1 presents results from an experiment
which was set up in order to study the relative importance of
these two quantities. Table I shows the CPU time in seconds for
taking one time step with Roe’s method for the two-dimensional
Euler equations on a Sun SPARC station 10/40 workstation,
using the FORTRAN programming language, compiled with
the -fast compiler option.

The first row shows the standard flux computation, the second
row shows exactly the same computation, but with the flux
computed in the hierarchical way of the multiresolution scheme.
The number of levels were increased from two on the coarsest
grid to five levels on the finest. In the third row we show the
time, when the actual multiresolution decomposition is done,
but with all fluxes computed by Roe’s method. We see clearly
that on this computer, the overhead from reordering the flux
computation is not large, but that the cost of doing the muitireso-
lution decomposition is significant. This overhead does not
depend on the method, so that with a more expensive high
order ENO flux computation it would be less significant.

The multiresolution decomposition is only used to flag the
nonsmooth part of the selution. It is therefore reasonable to
compute the coefficients df; for only one component of the
equations. In the last row we present performance figures for
the method where multiresolution is made only in the density.
A small gain is obtained from this p-multiresolution method.

From Table I we can estimate the practical value of ¢,/¢; by
taking the quotient between the costs for the overhead and the
straight flux computation. We obtain the value 78%, which
means that, based on the value ¢, = 140, we have ¢, = 110.
This gives the considerably more negative estimate p = 0.92
for the first-order Roe’s method; i.e., 92% of the fluxes must
be interpolated in order to have any gain in CPU time.

We present in Table II a decomposition of the multiresclution
overhead for the grid with 257 X 129 points. Encoding I is
the cost to compute the coefficients d, for the I-direction flux
computation, Truncation is the cost to compute the flag vector
mf . from the coefficients d};. The table shows the total cost
for all multiresolution levels. It is clearly the encoding which
dominates the cost. Note that the cost for computing the trunca-
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tion is significant, although there are hardly any arithmetic
operations in this algorithm.

In another test, where we used Roe’s method in an actual
multiresolution computation on an IBM RS6000 workstation,
we obtained by numerical experiments that p = 62% in order
to have a gain in CPU time. In the next section we will go
more into detail about the actual performance of the method.

6. NUMERICAL RESULTS

In order to monitor the performance of the multiresolution
method, we here present some computations that are standard
in computational fluid dynamics (CFD). We used a Sun
SPARCstation 10/40 workstation and we implemented the algo-
rithms in Fortran 77, using the compiler option -fast. We
use a second-order TVD difference method in finite volume
formulation and, thus, we use cell average interpolation formu-
las. One of the purposes of this work was to evaluate the
multiresolution method under standard CFD conditions. This
is the reason why we chose the finite volume method, since it
is a commonly vsed technique in CFD, and this is also the
reason why we chose a steady state computation.

The first test is the supersonic flow past a disk. The freestream
Mach number is 3. The iso-Mach contours of a typical steady
state solution are shown in Fig. 6.1.

The problem was solved on grids of various sizes. The multi-
resolution scheme becomes more efficient for grids with a large
number of grid poiits, since a relatively larger number of fluxes
can be interpolated. In Table Il we show results using a grid
of 257 X 129 points. This turned out to be the smallest number
of points required to obtain any gain in CPU time. We give the
percentage of flux evalvations in the computation for different
numbers of grid points and different choices of the truncation
parameter & in Algorithm 3.1. We use p = 1, where p is the
other parameter in Algorithm 3,1. The number of multiresolu-
tion levels were five. Multiresolution was done in the i-direction
for the i-direction fluxes and in the j-direction for the j-direction
fluxes, as descrbed in Section 4. The fourth-order formulas
(2.4) were used in the flux interpolation.

We show performance results in Table III. There is no

TABLE II

Closer Investigation of the MR Overhead
in CPU Seconds

MR pMR
Total overhead 0.8 0.6
Encode 1 0.28 0.18
Encode J 0.29 0.19
Truncate I 0.10 0.06
Truncate J 0.10 0.07
Remains 0.03 0.10
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speedup in terms of CPU time. The first-order Roe’s method
is too inexpensive to make up for the multiresolution overhead
as discussed in the previous section. This test problem serves
to evaluate other aspects of the method, such as the quality of
the computed solution. For the case ¢ = 0, we computed the
fluxes in a straight way, not doing the hierarchical multiresolu-
tion ordering. Thus the overhead for multiresolution interpola-
tion is not included in this case.

The distance from the solution with ¢ = 0 is given; the
difference is small. However, when we look at the residual in
this steady state computation, we see that the multiresolution
method inhibits steady state convergence. The residval entry
in Table III gives the level on which the convergence curve
flattens out; it is measured in the L” norm. The last entry is the
L? norm of the error in entropy on the body, i.e., the difference
between the exact entropy, which is known analytically, and
the computed solution. This is the important quantity which
we typically would like to capture in a CFD computation. The
entropy on the body is not much affected by the multiresolution
manipulations. The reason is that the boundary fluxes are evalu-
ated and not interpolated and that the errors coming from poor
steady state convergence are located near the shock wave and
not on the body,
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FIG. 6.2, i-direction for ¢! density multiresolution coefficient.

In Fig. 6.2 we show the multiresolution coefficient 4}; at
steady state on the second finest grid, G,, for the density compo-
nent in the i-direction multiresolution. We show the correspond-
ing j-direction quantity in Fig. 6.3. For all grids used in this
section, the j-direction is the radial direction, and the i-direction
is tangentiai to the boundary of the disk. It is clear that d' is
large in the nonsmooth part of the solution. However, the shock
is almost aligned with the i-direction, and consequently in the
i-direction d* is only a little larger near the shock. That is the
reason why contour lines can be seen outside the shock in
Fig. 6.2.

In this computation we have assured that the grid transforma-
tion (x(& ), y{(& n)) is smooth. However, when this is not
the case, d' will be large in the parts of the domain where the
grid is not smooth. Finally, the quantity m/; is given in Fig.
6.4 and Fig. 6.5,

In Figs. 6.4 and 6.5 we see that a reasonable part of the
solution is flagged by the mulitiresolution method. It is mostly
the points around the bow shock which have m}; = 1.

Next we consider a less trivial test case, the interaction of
two shocks. This is a problem where it could be motivated to
use a large number of grid points. We start from the solution
of the previous test problem, supersonic flow past a disk, and

TABLE 11

Performance for Supersonic Disk Flow, Roe's Method with Multiresolution

£ Seconds/step % Roe fluxes flas — =} Residual Error on body
¢ 1.10 100 0 0.001 0.025
0.05 1.62 42 0.0047 235 0.026
0.1 1.57 35 0.013 4 0.026
0.5 1.50 25 0.058 20 0.025
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we let a second shock impinge on the bow shock. This set up
is described in [5].

We used the second-order accurate Roe’s method for this
computation. The piecewise linear reconstruction is done in the
characteristic variables, and we use the minmod limiter. This
problem is very sensitive to the limiting procedure. We have
found that limiting in the variables (p, u, v, p) leads to substan-
tial oscillations in the density.

We show the iso-Mach contours of a well-resolved solution
in Fig. 6.6 on a grid having 257 X 129 points. In Fig. 6.7 we
show the result of a computation using multiresolution, with
parameter values in the truncation Algorithm 3.1 ¢ = 0.1, p =
2. The flag vector m/; for the j-direction decomposition js
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FIG. 6.4. i-direction for one m/; contour line at the value 0.5.
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FIG. 6.5. j-direction for one m!; contour line at the value (.5.

displayed in Fig. 6.8, indicating the part of the domain where
the flux is computed directly. Like in the previous case, we see
that the multiresolution scheme flags the non smooth part of
the computational domain correctly.

In Fig. 6.9 we have increased & to 3, which is near the largest
possible value, because the computation was unstable and blew
up with & = 4 for the CFL number we used (3). We see that
small oscillations start to appear. In Fig. 6.10 the i-direction
flag vector m{; shows that only a small part is flagged. The
grid is almost aligned with the bow shock near the lower part
of the plot and thus this part is not flagged, not even at the
shock. Instead, in the radial j direction the bow shock is clearly
flagged; however, for this large value of & we start losing

-0.50 =
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T T I | 1 T

-1.5%0 -1.00 -0.50 0.00

FIG.6.6. Iso-Machcontours, shock—shock interaction, 257 > 129 points.
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FIG. 6.7. Iso-Mach contours, shock—shock interaction, € = 0.1,p = 2.

information from the region of shock interaction. Table IV
shows some performance data for this computation.

The first three entries in Table IV show the overhead from
reordering the flux computation in the multiresolution way and
the overhead from doing the multiresolution decomposition.
We see that the overhead for reordering the flux computation
is large. In addition to the overhead described for the first-order
accurate method in Section 5, we here have an additional source
of overhead. The slope in the piecewise linear reconstruction,
53, in formula

Ryip = BQay — §00 /2, 4+ 5,/2)

is computed twice, once for the A, flux and once for the A,_
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FIG. 6.8, m/;, shock-shock interaction, € = 0.1, p = 2.
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FIG. 6.9. Iso-Mach contours, e = 3, p = 2.

flux. In the straight order of computation, 5; needs only to
be computed once for each cell. This is not possible in the
multiresolution scheme, since we do not know in advance in
which cells 5; will be required. It is possible to precompute
the slopes in the multireselution order, but this will involve
additional overhead which does not make it worthwhile. In
many simpler problems, limiting can be done in the variables
(p, u, v, p) and the cost of recomputing s; would not influence
the performance as significantly as for this problem.

Further down in Table 1V we show the result from using the
multiresolution method with three different values of . We
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FIG. 6.10. | direction m};,
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obtain a significant gain in CPU time, This is contrary to the
first-order method, where no gain was obtained. We thus have
an example of the obvious fact that the more expensive the flux,
the more advantageous is it to use the muitiresolution method.

Here we computed the second-order TVD flux everywhere
when mf; = 1. It is described in [2], and in Section 4, how to
further gain in CPU time, by changing to a centered difference
flux when d; is below some tolerance level of oscillations, £u..

We finish by introducing this adaptive flux evaluation (4.2)
into the computer code. We follow [2] in taking &, = £,. In
the previous computations forward Euler was used as time
discretization. The centered difference approximation is not
stable when forward Euler is used in time. We therefore use
a three-stage Runge—Kutta method in the time for the total
computation. The figure for the CPU time/step given in Table
1V is for this computation CPU time per Runge-Kutta stage.

In Table 1V we show results for e = 0.5 and ¢ = 0.1. When
centered difference fluxes are mixed with TVD fluxes in this

TABLE IV

Performance for Shock—Shock Interaction, Second-QOrder Roe
with Multiresolution

Method & Seconds/step % Roe % centered
Natural order 0 2.40 160 0
MR order 0 2.58 100 0
MR order + overhead 0 353 100 0
MR 0.1 270 6i 0
MR 1 2.13 34 0
MR 3 2.04 30 0
Adaptive MR 0.1 2.00 15 74
Adaptive MR 0.5 1.85 9 73
Adaptive MR, 2 levels 0.1 1.60 15 74
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FIG. 6.12. Adaptive fluxes, & = 0.5,

way, it tums out that a smaller value of £ is required in order
to keep the computation stable. Nevertheless, the results from
using m?; are considerably more encouraging in terms of CPU
time. A reduction of approximately a factor 0.8 in CPU time
is obtained.

We see in Fig. 6.12 and Fig. 6.13 that, like in the previous
computations, oscillations develop when & is increased. How-
ever, the solution with &£ = 0.] looks almost as good as, if not
better than the TVD solution in Fig. 6.6.

A big advantage with the adaptive multiresolution method
is that it can avoid the degeneracy to first order at smooth
extrema. The degeneracy at extrema is a preblem which plagues
all second-order accurate TVD methods. The centered differ-
ence method does not have the problem and is more accurate

c.o00 A

~0.50 .

-1.50 -1.3%¢C -0.50 a.co 0.50

FIG, 6.13. Adaptive fluxes, e = 0.1.
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in the smooth part of the solution than a TVD) method. Thus
the adpative multiresolution method gives both a decrease in
computational time and an increase in accuracy. It is a method
which we strongly recommend.

" From the numerical experiments we conclude that the biggest
advantage comes when centered fluxes are mixed adaptively
with TVD fluxes. Actually, it is possible to improve the perfor-
mance by abandoning the multilevel approach for a two-level
algorithm. In the last entry of Table IV we show the time for
a computation based on only two multiresolution levels,
whereas all the other computations were made with five levels.
The overhead becomes smaller, and the number of interpolated
fluxes does not change significantly.

The cost of interpolating a numerical flux function is compa-
rable with the cost of evaluating a centered difference flux. We
suggest that for optimal performance, we only compute one
level of multiresolution coefficients, 4/, and use these to switch
between centered and TVD fluxes, with no flux interpolation.

7. CONCLUSIONS

The multiresolution method, presented in [1] gives a consid-
erable gain in efficiency, under the following conditions:

1. Large number of grid points.
2. Computationally expensive original method.

3. Nonvector computer.

If these conditions are not satisfied it is not as clear whether
it will pay to use the method. More investigations are probably
necessary. We presented formulas in Section 3 which can give
some guidance to the expected performance.

The method is straightforward to generalize to two dimen-
sions on curvilinear grids. The method can inhibit steady state
convergence to machine precision. However, we did not ob-
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serve that this caused any loss of accuracy; the residual was
on the level of the truncation error.

We conclude by numerical experiments that multiresolution
does not pay for a first-order TVD method, but gives improve-
ment in execution time for a second-order TVD method. In
order to achieve the largest gain, it is necessary to adaptively
mix centered and TVD fluxes as described in [2] and to keep
the number of multivesolution levels small. For the best case
we reduced the CPU time by a factor 0.56. The gain was not
as substantial as in the one-dimensjonal tests in [1]. Neverthe-
less, the adaptive multiresolution method, where centered and
TVD fluxes are mixed, gives sufficient reduction in CPU time
that it would be worthwhile implementing it into real production
CFD codes.

We have here only implemented the multiresolution scheme
for finite volume TVD methods of order one and two. The
method is better suited for the more expensive ENO schemes.
The reason we did not use the ENO method here was, first,
that we wanted 10 investigate how well the method performs
on a state of the art CFD problem and, second, to keep the
work manageable. A natural continuation of this work would
be to implement the multiresolution method for the flux interpo-
lated ENO scheme in [4].
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